

Transparent
Compression of
GPU Memory
PoC Modification of Mali GPU Kernel Drivers

Sergei V. Rogachev

Licensed under the terms of the Creative Commons license CC BY-NC-SA

s.rogachev [at] samsung [dot] com

Background

● Today almost every interactive device is equipped
with graphics processing unit a.k.a. GPU:
– Smart phones;

– Tablet PCs;

– Smart watches;

– Smart TVs;

– Set top boxes;

… and even refrigerators…

Problem Proposition

● Mobile GPUs utilized in the mentioned devices don’t
have dedicated memory and use the systems’ one.

● A GPU driver allocates memory for results of
rendering, shaders and graphical primitives: textures,
color buffers, tiler’s buffers, etc.

● Thus, the GPU driver consumes memory that could be
used by an operating system and user applications!

Preliminary Work

Is it possible to
reclaim memory

used by GPU?

Is it really
possible, Sergei?

Ah, I think “No!”
GPU reclaim?
Ridiculous!

Big Boss Group Leader Me

1

Summer 2015

The idea of GPU memory compression/swapping looked strange and
non-easily implementable. Honestly, we knew almost nothing about
GPU drivers and graphical stack. We saw an example of a fail in the
sphere of GPU memory paging:
Carmack, J. GPU data paging (2010)

Preliminary Work

And there is no
way to do it?

Dmitry, please,
check if it’s
possible!

O.K. I’ll try,
but it’s a bad

idea!

Big Boss Group Leader Dmitry

2

Almost at the same time a number of scientists from Korea
participate in the EMSOFT conference with their implementation of
a graphical buffers compression technique.
Kwon, S., Kim, S.-H., Kim, J.-S., and Jeong, J. Managing gpu buffers for
caching more apps in mobile systems. Proceeding EMSOFT '15, 207–216
(2015)Autumn 2015

Preliminary Work

3

A prototype
GPU SWAP

GPU SWAP – modification of a kernel GPU
driver (Mali Midgard) implementing swapping
of least recently used graphical memory.

Main characteristics:
● Reuses the swap facilities of the Linux

kernel (overhead due to usage of block
layer, necessity to modify the core kernel
code);

● Implements own per-page LRU policy;
● Manually manages CPU and GPU

mappings to pages of graphical memory;
● Uses ZRAM as a swap backend.

Autumn 2015

Current State

4

Transparent
GPU memory
compression

Transparent GPU memory compression – a
PoC solution for Midgard and Utgard GPU
kernel drivers for compression of temporary
unused GPU memory.

Main characteristics:
● Doesn’t use the swapping facilities of the

Linux kernel (smaller overhead, no core
kernel modifications);

● Implements generic layer GMC with in-
memory compressed storage based on
ZPOOL and CRYPTO COMP API;

● Tries to keep modifications to the Mali
kernel drivers code as little as possible.

These days

Hardware Overview

Virtual addresses

Memory
shared between
CPU and GPU

CPU MMU IOMMU MMU GPU

Bus addresses

Physical addresses

Virtual addresses

Optional

Hardware Overview

Vertex Processor

Fragment Processor Fragment Processor

Fragment Processor Fragment Processor

Fragment Processor Fragment Processor

MMU MMU

Level 2 Cache Level 2 Cache

AMBA AMBA

Utgard

Hardware Overview

Inter-Core Task Management

Shader Processor Shader Processor

Shader Processor Shader Processor

Shader Processor Shader Processor

MMU MMU

Level 2 Cache Level 2 Cache

AMBA AMBA

Midgard

Mali Driver: Memory Management

● GPU drivers are typically split to two parts: kernel driver
(mali.ko) and user mode library (libmali.so).

● The user mode library initiates a session by opening the
device file.

● The user mode library requests the kernel driver to allocate
memory via IOCTL. The memory is mapped to GPU via GPU
MMU.

● The memory is mapped to user space via mmap() system
call.

Types of GPU Memory

GPU Memory Allocations

Imported Memory (IUMM) Internally Allocated Memory

mem_os /
Native

Block ...

Memory allocated by DRM GEM layer
(Generic Linux, Tizen) or ION allocator
(Android).

Used to keep results of rendering.

Cleverly managed at the level of
modern composite managers. Nothing
to do here.

Used to store objects
related to elements of
graphical scene:
textures, buffers,
shaders, etc.

KERNEL SPACE

Operation Sequence: Compression

HARDWARE

USER SPACE

GPU MMU GPU Core

Mali Driver Kernel MMGMC

Resource
Daemon

Graphical
application

watches graphical
applications

1

2 3

45

6

Tizen 3.0 resource manager

Operation Sequence: Compression

● Resource Daemon watches applications and notifies GMC
layer when some application goes to background.

● GMC translates the request to the GPU driver.
● GPU driver performs unmapping of graphical memory pages

of the process from GPU and CPU perspectives of view.
● GPU driver passes pages to GMC storage to store them in

compressed form.
● GPU driver frees the pages via Linux MM API.

1

2

3 4

5

6

KERNEL SPACE

Operation Sequence: Decompression

HARDWARE

USER SPACE

GPU MMU GPU Core

Mali Driver Kernel MMGMC

Resource
Daemon

Graphical
application

12

4

3
5

GPU Access

Operation Sequence: Decompression

● Some GPU job accesses a memory address corresponding to a
compressed page frame.

● GPU MMU signals the CPU about a page fault exception via
interrupt, interrupt handler of the GPU driver is executed.

● The GPU driver tries to allocate a page frame using Linux MM API.
● The GPU driver requests the GMC storage to decompress page’s

data.
● The GPU driver maps the page to the corresponding GPU virtual

address.

1

2

3

4

5

KERNEL SPACE

Operation Sequence: Decompression

HARDWARE

USER SPACE

MMU CPU Core

Mali Driver Kernel MMGMC

Resource
Daemon

Graphical
application

23

5

4

6

CPU Access

1

Operation Sequence: Decompression
● Some graphical application is scheduled on a CPU core.
● Being executed on CPU the code accesses some memory address.
● MMU signals the CPU about a page fault exception (data abort),

interrupt handler of the GPU driver is executed.
● The GPU driver tries to allocate a page frame using Linux MM API.
● The GPU driver requests the GMC storage to decompress page’s data.
● The GPU driver maps the page to the corresponding CPU virtual

address in the address space of the faulted process.

1

2

3

4

5

6

Internals

● GMC (new)
– Infrastructure;

– Storage;

– Interface (debugfs).

● GPU Driver (modified)
– Native / mem_os

allocator;

– GPU page fault
handling;

– CPU page fault
handling.

Results

Characteristic Value

Compression ratio (with zeroed pages) 6 – 9

Fair compression ratio 2.5 – 3

Saved memory 5 – 10%

LOC (generic) ~ 600

LOC (driver specific) ~ 500

Current Problems

● GPU drivers are different internally: often different versions
of the same driver revision have notable differences in
internals.

● GPU drivers are designed initially without any reclaim
facility in mind.

● It is difficult to develop a more-or-less generic and abstract
layer/subsystem for implementation of GPU memory
compression in different GPU drivers.

● The solution is too far from Linux MM default mechanisms.

Current Problems

● The solution cannot be upstreamed easily:
– Generic code looks similar to ZRAM, ZSWAP, ZCACHE,

etc. The community is not interested in such code.

– Driver specific part can be contributed to ARM Mali
community through the support team. The process is
difficult.

– GPU compression/swapping/reclaim is not interesting
for community in general.

References
• Kwon, S., Kim, S.-H., Kim, J.-S., and Jeong, J. Managing gpu buffers for caching more

apps in mobile systems. Proceeding EMSOFT '15, 207–216 (2015)
• Carmack, J. GPU data paging,

http://media.armadilloaerospace.com/misc/gpuDataPaging.htm (2010)
• Dominé, S. Using texture compression in OpenGL, NVIDIA Corporation (2000)
• Dae, I. DRM Driver Development for Embedded Systems, Embedded Linux

Conference (2011)
• Ziv, J. and Lempel. A. A universal algorithm for data compression, IEEE trans. on

information theory, IT-23, No 3, 337–343 (1977)
• Tanenbaum, A. Operating Systems Design and Implementation, Third Edition

(Prentice Hall, 2006)
• Gorman, M. Understanding the Linux Virtual Memory Manager (Prentice Hall PTR,

2004)
• Corbet, J. Transcendent memory. Linux Weekly News (2009)
• Magenheimer, D. In-Kernel Memory Compression. Linux Weekly News (2013)
• Prodduturi. R. Effective Handling of Low Memory Scenarios in Android, Indian

Institute of Technology (2013)

http://media.armadilloaerospace.com/misc/gpuDataPaging.htm

Acknowledgement

● Dmitry Safonov – developed the first GPU SWAP
prototype.

● Alexander Yaschenko – develops the current
version of transparent GPU memory compression
on Midgard.

● Krzysztof Kozlowski – developed the GEM
memory compression prototype.

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

